
Implementing Evolutionary Processors in JAVA: A case study*

 M. Campos, J. González, T.A. Pérez and J.M. Sempere

Dept. de Sistemas Informáticos y Computación, Universidad Politécnica de Valencia
Camino de Vera s/n, 46022 Valencia (Spain)

 (Tel : + 34 96 387 73 53; Fax :+34 96 387 73 59)
(Email address: {mcampos,jegonzalez,taperez,jsempere}@dsic.upv.es)

Abstract: Networks of Evolutionary Processors are universal models of computation inspired by point mutations in
DNA strands performed in nature. These models have been used to solve NP-complete problems efficiently under a
parallel computation assumption. Here, we propose a Java architecture for the Evolutionary Processors of the network
as a first step to obtain a full simulator of the model. We propose Java methods and interfaces in order to obtain a
versatile and portable version of the model. In order to show our proposal we will study the case of solving a classical
problem in computational complexity theory, the well known Satisfiability Problem (SAT).

Keywords: Evolutionary Processors, simulators, OO methods, Java implementation, SAT.

* Work partially supported by the Spanish Ministry of Education and Science under research project TIN2007-60769.

I. INTRODUCTION

Networks of Evolutionary Processors (NEP) were
first introduced in [1] as a computation model to solve
NP-complete problems. The model is inspired by point
mutations in DNA strands (insertion, substitution and
deletion of pairs of nucleotides). So, an evolutionary
processor can be viewed as a cell with genetic
information encoded inside and with some operations
that can be performed over them in order to obtain new
genetic codes. The network, as presented in [2], is
composed by a finite number of evolutionary processors
running in an independent way with some
communication abilities to send strings from one
processor to the rest of processors connected to it. The
communication operations include the presence of input
and output filters. It has been proved that this model is
universal in the sense that it can generate any
recursively enumerable language [2]. A modified
version of this model was proposed in [3], the so called
Hybrid Networks of Evolutionary Processors (HNEP).
The main difference between a NEP and a HNEP is the
way in which every operation is applied at every
processor. In the first model, we have uniform actions
(all the deletion and insertion operations are performed
in the same positions), while in HNEPs every operation
could be different from one processor to the others.
HNEPs have been proposed as generating devices
(GHNEPs), and accepting ones (AHNEPs). Both

proposals have been proved to be universal [3]. A
complete survey about NEPs can be viewed in [4].

In this work, we propose a full architecture of
classes and interfaces in Java for evolutionary
processors as a first step to implement a complete
simulator of (Hybrid) Networks of Evolutionary
Processors. The advantages of obtaining such a
simulator are clear. Observe that NEPs were first
proposed to solve NP-complete problems. So, the
simulator that we will implement will be an adequate
tool to solve such problems by introducing the correct
user interface. Furthermore, if we supply a complete
benchmark to the simulator for solving any problem,
then we can study the problems under a different point
of view by observing the work-load at any processor.

Other simulators have been proposed for different
computation models based on the cell. We could
mention the proposal in [5] where a simulator for P
systems is proposed. (P systems [6], also known as
membrane systems, are universal models of
computation based on the structure of membranes of the
living cell.)

In the next section, we will provide the basic notions
and definitions of NEPs that we will implement in the
simulator.

II. BASIC CONCEPTS AND NOTATION
An Evolutionary Processor is defined as the tuple

Π = (M, A, PI, FI, PO, FO) where M is a finite set of
evolution rules of the following forms only:

The Thirteenth International Symposium on Artificial Life and Robotics 2008(AROB 13th ’08),
B-Con Plaza, Beppu, Oita, Japan, January 31-February 2, 2008

©ISAROB 2008 510

1. a → b (substitution rules)

2. a → λ (deletion rules)

3. λ → a (insertion rules)

We will permit the application of insertion and
deletion rules at every position of any string.

A is a finite set of strings over the alphabet Σ with
multiplicities (i.e. every string has an arbitrarily large
number of copies) and PI and PO are subsets of Σ that
denote the input and output permitted contexts of the
processor, while FI and FO (which are again subsets of
Σ) are the input and output forbidden contexts of the
processor. For a given couple of permitted and
forbidden contexts P and F we will define four ways of
running the filters to act over a string w. They will be
defined as follows (alph(w) will denote the set of
symbols that w contains):

1. (P ⊆ alph(w)) ∧ (F ∩ alph(w) = ∅)

2. alph(w) ⊆ P

3. (P ⊆ alph(w)) ∧ (F ⊄ alph(w))

4. (alph(w) ∩ P ≠ ∅) ∧ (F ∩ alph(w) = ∅)

In addition, we can assume P and F to be languages
over Σ instead of symbols. Then, the filters can be
adapted to keep the membership property instead of the
⊆ and ∩ relations.

We will denote the set of evolutionary processors
over V by EPV.

A hybrid network of evolutionary processors is a
tuple Γ = (V, G, N, C0, β, i0) where

1. V is an alphabet

2. G=(XG, EG) is an undirected graph which
represents the topology of the network

3. N: XG → EPV is a mapping that associates to each
node an evolutionary processor

4. C0 : XG → 2V* is a mapping that associates to
every node an initial set of words. Namely, it is
the initial configuration of the network.

5. β: XG → {(1), (2), (3), (4)} defines the type of
input/output filters of every processor.

6. i0 ∈ XG is the output node of the network

Observe that in the definition given in [2], the
network includes a component α that defines the
application of the insertion and deletion rules at the
right, left or at any position of any string. Here, we
eliminate such component given that the rules will be
applied at an arbitrary position.

The running of a NEP starts by an evolutionary step
where the rules are applied in every processor

independently. All the combinations of rule applications
are considered due to the presence of multiple copies of
every string. Then, a communication step is performed,
where the strings inside every processor are filtered as
outputs and then they are sent out to the rest of
processors which are connected to the source one. When
the strings arrive at any processor they are filtered as
inputs. These two phases are repeated as many times as
possible. Finally, when the network stops (i.e. there is
no application of rules and communication of strings)
the result is collected in the processor i0.

This model has been proved to be universal. That is,
the model is able to recognize or generate any
recursively enumerable language [2].

In the following section we will show a proposal to
implement every component of the evolutionary
processors.

III. IMPLEMENTING EVOLUTIONARY
PROCESSORS

Here, we propose an implementation of evolutionary
processors in Java [7]. This implementation is based on
a set of interfaces that define the operativity of the
application and the relations between the different
classes that we will propose. For every interface we
can define different classes, so we have a high degree of
flexibility and a robust formalism for every function
that the operating units must perform.

For example, the classes ExecEngineSequential
and ExecEngineConcurrent represent a sequential
running engine and a concurrent running engine
respectively. They share the same interface to
communicate with the rest of classes.

The dependencies between classes and interfaces are
showed in Figure 1 which represents the diagram of
classes in UML.

<<interface>>

IMultiSet

+removeWord
+addWrod
+words
+addMultiSet

+getNumnerOfCopies
+removeMultiSet

<<interface>>
IRules

+returnResult
+apply

<<interface>>
IFilter

+passFilter

<<interface>>
IExecEngine

+applyRules
+returnResult
+setRules

<<interface>>

+startOneStep
+endOneStep
+inFilteredWords
+update

IEvolutionaryProcessor

EvolutionaryProcessor

<<interface>>
IRule

+positions
+applyRule

FilterAut

FilterLOW

FilterLOS

FilterLOCh

ExecEngineThreadExecEngineSecuential

<<interface>>
Map

MultiSetTree MultiSetHash

Rule

Rules

1
2

2

1
1

1..n

Fig. 1. Diagram of classes in UML

We will explain the diagram of Fig. 1. First, we can
see that the application main class is

The Thirteenth International Symposium on Artificial Life and Robotics 2008(AROB 13th ’08),
B-Con Plaza, Beppu, Oita, Japan, January 31-February 2, 2008

©ISAROB 2008 511

EvolutionaryProcessor which is implemented by the
interface IEvolutionaryProcessor. In addition, this
class has a set of components which are defined through
their interfaces: One or more rules, two filters (one to
act over strings and the other that acts as a buffer) and a
running engine.

The rules can be of insertion, substitution or deletion.
The filters are defined as lists, and they can be lists of
words (LOW), lists of segments (LOS), lists of
characters (LOCh) which can be permitted or forbidden
or finite automata (Aut) which define regular languages
in order to make membership filters. The multisets have
been implemented through the interface Map<K,V> in
Java. We can use hashMap<K’,V> or treeMap<K,V>.

Finally, for the running engine we have two
implementations: one which is sequential and the other
which is concurrent but it is based on the sequential
engine.

The operability of the evolutionary processor is
composed of two phases: First we have a calculation
phase which starts with a call to the method
startOneStep of the evolutionary processor. This
method calls to the method applyRules which applies
the rules which have been previously passed through
setRules. These rules are applied over the words of the
multiset which has been passed as a parameter and,
finally, the result is stored. The method of the
evolutionary processor endOneStep, gets the last stored
result and calculates the words which remains in the
processor (they will be stored in buffer). In addition it
calculates the words that will be sent out the processor.
We can see the full operability of the evolutionary
processor in Fig. 2.

EvolutionaryProcessor ExecEngine Rules Rule

startOneStep
applyRules(words)

apply

applyRule(word,position)

endOneStep
returnResult

returnResult

outFilteredWords

[for each word in words]

positions

Fig. 2. Operability in the evolutionary processor.

The second phase that we have referred before is the
communication phase. After the running of endOneStep
we have the set of words that will be sent out the
processor to the rest of connected processors in the
network. In addition, the rest of connected processors in
the network will sent their words to the current

processor. We will use the method inFilteredWords to
collect these multisets and we store in buffer the words
that pass the input filter. Finally the method update is
called to update the multiset of words with the words
stored in buffer.

Interfaces and source code
Now we will describe every component of the

evolutionary processor defined by its interface. We will
explain every interface and its methods.

Rule
We have the following interface to manage a single

rule of the processor

 public interface IRule {
Vector<String> applyRule(Vector<String> s,
 int pos);

 int[] positions(Vector<String> s);
 String getType();

}

 The main method is called applyRule and it takes
a word and one of its positions as parameters. Then, the
rule is applied over the word at the specified position
and the method returns a new word. In order to calculate
the available positions, we use the method positions
which returns an array with all the positions in which
we can apply the rule over the word. The method
getType will be used in different classes to get
information about the objects (usually the information
returned is the type of the object).

 The class RuleGram implements this interface.
We use it in order to define deletion, substitution or
insertion rules. Every rule has two Strings (the head and
the body) with length greater or equals to zero (which
represent the empty string).

Rules

We have the following interface to manage a set of
rules of the processor

 public interface IRules {

 void apply(IMultiset m);
 IMultiset returnResult();
 String getXML();
 String getType();
}

 The main method is called apply and it takes a

multiset as input and then it inspects every word that it
contains and it applies an arbitrary rule to every copy of
the word. The rest of the words remain stored in an
auxiliary multiset that belongs to the running engine. In
this phase we use the methods of the rule. We use the
methods of the rule positions and applyRule. This
process can avoid the random component to select rules
in the case that we have an infinite number of rules
given that we can apply all the available rules over the

The Thirteenth International Symposium on Artificial Life and Robotics 2008(AROB 13th ’08),
B-Con Plaza, Beppu, Oita, Japan, January 31-February 2, 2008

©ISAROB 2008 512

words and we can obtain all the combinations with an
infinite number of results. The method returnResult
allows accessing the auxiliary multiset to obtain the
result of the calculation step. The method getXML
obtains the corresponding XML scheme and, finally, the
method getType will be used in different classes to get
information about the objects. In this case, it returns the
type of rules that we are applying..

Filters

The input and output filters of the processor are
managed through the following interface

public interface IFilter {
 boolean passFilter(Vector<String> s);

 String getXML();
 String getType();

}

 The main method, passFilter, tells whether a word
pass the filter or not, while getType returns the type of
the filter.

The class FilterLOW implements this interface and
represents the filter which is defined by a list of strings.
In order to pass the filter a membership query is
performed. If a given word belongs to the vector of
strings then it passes the filter, otherwise it does not. In
order to create the filter, we impose a lexicographic
order in the elements of the vector. So, when we are
interested to test whether a word belongs to the vector
or not, we employ a logarithmic time process instead a
linear one.

There are three more available implementations,
(filterLOS, filterLOCh and filterAut). They represent
filters that contain segments or characters which can be
permitted or forbidden or a finite automaton in order to
define membership filters. We can manage four different
ways of running the filters. See the definitions in section
2. We will use segm(w) instead of alph(w) when we
apply filterLOS. Here, segm(w) represents the list of
segments of w.

We can observe that, when we use filterLOW there
is only one way of running.

Multisets

The multisets that appear in the evolutionary
processors can be managed through the following
interface

import java.util.Iterator;
import java.util.Vector;
public interface IMultiSet {
 void addMultiSet(IMultiSet m);
 int getNumberOfCopies(Vector<String>
 word);
 void addWord(Vector<String> word,
 Integer copies);
 void removeWord(Vector<String> word);

 Iterator<Vector<String>> words();
 void removeMultiSet(IMultiSet ms);
 String getType();
 int size();
 String getXML();
}

This interface represents a multiset of words and it

includes the set of basic functions to manage it. In
order to add a word to a multiset we use addWord.
Here we pass a word and its number of copies (the
number of copies must be greater than 0 and we use -1
to represent an infinite number of copies). The method
removeWord erases every copy of a given word.
addMultiSet adds a multiset to the current multiset (if
they have common words then it sums the number of
copies) and removeMultiSet deletes all the words
contained in the parameter multiset from the current
multiset. In addition, we have two more methods which
allows the inspection of a multiset. They are words,
that obtains an iterator which contains every word, and
getNumberOfCopies which tells the number of
copies of every word in the multiset. Finally, to get the
information of a multiset we have the methods getType
which returns the type of the multiset and size which
tells the number of words that it contains.

This interface has two different implementations: we
can use MultiSetHash or MultiSetTree. Both classes
depend from the interface Map and the unique
difference between them is the concrete implementation
from the interface Map. So, MultiSetHash uses a
HashMap, while MultiSetTree uses a TreeMap. We
will use these data structures to store every word (which
acts as a key) and the number of its copies.

The running engine

The following interface implements the running
engine

public interface IExecEngine {
 void applyRules(IMultiSet m);
 IMultiSet returnResult();
 void setRules(IRules r);
}

The running engine is one of the main components

of the implementation given that it will support most of
the work. So, an efficient implementation is
fundamental to obtain an application with a high
performance efficiency. First, we must specify the rules
to be applied before calling any calculation step. In
order to make so, we use the method setRules. Then,
we can start the calculation process which is divided
into two different phases. In the first phase, applyRules
calls the method apply of the class Rules. The method
returnResult calls the method returnResult of the class
Rules.

The Thirteenth International Symposium on Artificial Life and Robotics 2008(AROB 13th ’08),
B-Con Plaza, Beppu, Oita, Japan, January 31-February 2, 2008

©ISAROB 2008 513

Evolutionary Processor
The following interface implements the evolutionary

processor.

public interface IEvolutionaryProcessor {
 void startOneStep();
 IMultiSet endOneStep();
 void inFilteredWords(IMultiSet m);
 void update();
 Object info(String t);
 IMultiSet getState();
 IRules getRules();
 IFilter getOutputFilter();
 IFilter getInputFilter();
 String getId();
 String getEngine();
}

 This is the main interface of the processor given

that it fully defines the operability of the application.
The calculation step is implemented through two
methods: startOneStep calls to the running engine
method applyRules, and sends the multiset of words of
the processor as a parameter. The second method,
endOneStep, calls to the method returnResult, and
then it returns a multiset. The method takes the last
multiset and evaluates the words that pass the output
filters, it returns these words. The rest of the words are
stored in an auxiliary multiset. The communication is
performed between returnResult (the words that are
sent out) and inFilteredWords which takes a multiset
(coming from a different processor) and inspects the
words that can pass the input filter. These words are
stored in the auxiliary multiset. After the running of the
calculation and communication phases we have stored
the words that must be kept in the processor inside the
auxiliary multiset. In order to update the state of the
processor we will use the method update. The rest of
methods of this interface have been designed to get the
information about the processor. We can obtain the
general information by using info, or we can use
concrete methods such as getState, getRules,
getOutputFilter, getInputFilter, getId and getEngine.

In order to store the descriptions of the processor
and the results that it produces, we have decided to use
XML files. This format allows a high compatibility and
power to make descriptions. An additional advantage to
use XML is that it is a well known standard with fully
implemented parsers and it allows an easy definition of
the structure of labels to be used. Whenever we wish to
run the application, we must pass the location of the
files which contains the definitions of the different
processors that we want to use. We have defined a XML
scheme for every component of the processor.

IV. SOLVING THE SAT PROBLEM

The Satisfiability Problem (SAT) is addressed as the
first problem to be NP-complete as it was proved by SA
Cook [8]. The problem can be enunciated as follows:
“Given a finite set of boolean variables and a finite set
of clauses over the variable. Is there any assignment for
the variables that holds every clause true ?”

Here, we propose a polynomial time solution for the
SAT problem by using a NEP of 2n + 2 processors,
where n is the number of boolean variables of the SAT
instance. In the following, we give a formal definition
of the NEP that we propose to solve SAT.

The SAT instance can be encoded as a finite string

x=<Q1><Q2>…<Q3> where Qj=b1b2…bk,. is the jth
clause and bp is a literal (that is the boolean variable or
its negated version). Let T={a1, a2, …, an} be the set of
the boolean variables of the SAT instance and
Tnot={¬a1, ¬a2, …, ¬an} be the corresponding negated
variables. We will consider the set C={<, >, t, f } and
V=T∪Tnot∪C. The network that we propose is
composed of 2n + 2 processors, namely Nin, Nout, N1t,
N2t,…, Nnt, N1f, N2f, …, Nnf. Here, Nin is the input
processor and Nout the output processor. The definition
of every processor is as follows, observe that we will
define every processor by the tuple (A,B,C,D) where A
is the finite set of evolution rules, B is the finite set of
initial strings in the processors, C is a language for the
input filter and D is a language for the output filter (here
we will use the class FilterLOW)

Nin=(∅, x, ∅, V*)
Nout=(∅, ∅, C*-C*<f+>C*, ∅)
(∀ i 1 ≤ i ≤ n)
Nit=({ai→t; ¬ai→f}, ∅,
 V*(ai,¬ai)V*,V*-V*(ai,¬ai)V*)
(∀ i 1 ≤ i ≤ n)
Nif=({ai→f; ¬ai→t}, ∅,
 V*(ai,¬ai)V*,V*-V*(ai,¬ai)V*)

The topology of the network will be a complete
graph.

The network works as follows: Initially we
introduce the encoded instance x in the input processor
Nin. Then, given that the output filter is V*, the string x
is communicated to the rest of the evolutionary
processors and it is stored inside them with the
exception of the output processor Nout due to its input

The Thirteenth International Symposium on Artificial Life and Robotics 2008(AROB 13th ’08),
B-Con Plaza, Beppu, Oita, Japan, January 31-February 2, 2008

©ISAROB 2008 514

filter. Observe that, for any processor Nit or Nif, the
string x will pass the input filter if the encoded instance
has an appearance of the variable ai or its negated
version ¬ai. In the following evolutionary step the
encoded instance is assigned with true or false values
for every variable. Observe that it is performed in any
processor Nit or Nif with their corresponding substitution
rules. Then, the assigned string is communicated to the
rest of processors and the assignment process is
performed in various steps as described before. Once
the string has all its variables with an assignment value
then it is communicated to the output node and it will
pass its input filter if and only if all the clauses are
satisfied.

Some remarks:
(1) The network assigns to the variables the same

value in different clauses. That is, if we assign the true
value to the variable ai then it is reflected in any clause
(observe that a string only leaves the processor Nit or Nif
if the variable ai has an assigned value at any clause due
to its output filter).

(2) The time complexity is polynomial with the size
of variables and clauses. Observe that we make all the
possible assignments in linear time (depending on the
number of clauses) and we communicate the strings in
linear time (depending on the number of variables).

(3) All the combinations of value assignments to
the variables are tested due to the topology of the graph,
which is complete.

V. CONCLUSION
We have proposed a full architecture of methods and

classes in Java in order to implement Evolutionary
Processors. This is the first step towards a full simulator
of the NEP model. As an example we have proposed a
solution for the SAT problem that holds the
implementation that we have proposed.

Actually we are performing a set of experiments in
order to test our implementation for the solution of the
SAT problem. The results will be reported in future
works. In addition, we are developing a user interface in
order to complete a full simulator for the NEP model.
Again, it will be reported in future works.

REFERENCES

[1] Castellanos J, Martín-Vide C, Mitrana V, Sempere.
JM (2001) Solving NP-complete problems with
networks of evolutionary processors. Proceedings of
IWANN 2001, LNCS 2084, pp 621-628. Springer-
Verlag.

[2] Castellanos J, Martín-Vide C, Mitrana V, Sempere
JM (2003) Networks of evolutionary processors. Acta
Informatica 39: 517-529

[3] Martín-Vide C, Mitrana V, Pérez-Jiménez M,
Sancho-Caparrini F (2003) Hybrid Networks of
Evolutionary Processors. Proceedings of GECCO 2003,
LNCS 2723, pp 401-412. Springer.

[4] Martín-Vide C, Mitrana V (2005) Networks of
Evolutionary Processors: Resuls and Perspectives.
Molecular Computational Models. Unconventional
Aproaches. (M. Gheorghe, editor). Idea Group
Publishing. 2005.

[5] Arroyo F (2004) Structures and Biolanguage to
Simulate Membrane Computing (in Spanish). PhD
Thesis. Universidad Politécnica de Madrid (Madrid,
Spain)

[6] Paun Gh (2002) Membrane Computing. An
Introduction. Springer-Verlag

[7] Horstmann CS, Cornell G (2005) Core Java (Vols
1 and 2) Prentice Hall

[8] Cook, SA (1971) The Complexity of Theorem
Proving Procedures. Proceedings Third Annual ACM
Symposium on Theory of Computing pp 151-158

The Thirteenth International Symposium on Artificial Life and Robotics 2008(AROB 13th ’08),
B-Con Plaza, Beppu, Oita, Japan, January 31-February 2, 2008

©ISAROB 2008 515

