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Abstract: Networks of Evolutionary Processors are universal models of computation inspired by point mutations in 
DNA strands performed in nature. These models have been used to solve NP-complete problems efficiently under a 
parallel computation assumption. Here, we propose a Java architecture for the Evolutionary Processors of the network 
as a first step to obtain a full simulator of the model. We propose Java methods and interfaces in order to obtain a 
versatile and portable version of the model. In order to show our proposal we will study the case of solving a classical 
problem in computational complexity theory, the well known Satisfiability Problem (SAT). 
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I. INTRODUCTION 

Networks of Evolutionary Processors (NEP) were 
first introduced in [1] as a computation model to solve 
NP-complete problems. The model is inspired by point 
mutations in DNA strands (insertion, substitution and 
deletion of pairs of nucleotides). So, an evolutionary 
processor can be viewed as a cell with genetic 
information encoded inside and with some operations 
that can be performed over them in order to obtain new 
genetic codes. The network, as presented in [2], is 
composed by a finite number of evolutionary processors 
running in an independent way with some 
communication abilities to send strings from one 
processor to the rest of processors connected to it. The 
communication operations include the presence of input 
and output filters. It has been proved that this model is 
universal in the sense that it can generate any 
recursively enumerable language [2]. A modified 
version of this model was proposed in [3], the so called 
Hybrid Networks of Evolutionary Processors (HNEP). 
The main difference between a NEP and a HNEP is the 
way in which every operation is applied at every 
processor. In the first model, we have uniform actions 
(all the deletion and insertion operations are performed 
in the same positions), while in HNEPs every operation 
could be different from one processor to the others. 
HNEPs have been proposed as generating devices 
(GHNEPs), and accepting ones (AHNEPs). Both 

proposals have been proved to be universal [3]. A 
complete survey about NEPs can be viewed in [4]. 

In this work, we propose a full architecture of 
classes and interfaces in Java for evolutionary 
processors as a first step to implement a complete 
simulator of (Hybrid) Networks of Evolutionary 
Processors. The advantages of obtaining such a 
simulator are clear. Observe that NEPs were first 
proposed to solve NP-complete problems. So, the 
simulator that we will implement will be an adequate 
tool to solve such problems by introducing the correct 
user interface. Furthermore, if we supply a complete 
benchmark to the simulator for solving any problem, 
then we can study the problems under a different point 
of view by observing the work-load at any processor. 

Other simulators have been proposed for different 
computation models based on the cell. We could 
mention the proposal in [5] where a simulator for P 
systems is proposed. (P systems [6], also known as 
membrane systems, are universal models of 
computation based on the structure of membranes of the 
living cell.) 

In the next section, we will provide the basic notions 
and definitions of NEPs that we will implement in the 
simulator.  

II. BASIC CONCEPTS AND NOTATION 
An Evolutionary Processor is defined as the tuple  

Π = (M, A, PI, FI, PO, FO) where M is a finite set of 
evolution rules of the following forms only: 
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1. a → b (substitution rules) 

2. a → λ (deletion rules) 

3. λ → a (insertion rules) 

We will permit the application of insertion and 
deletion rules at every position of any string. 

A is a finite set of strings over the alphabet Σ with 
multiplicities (i.e. every string has an arbitrarily large 
number of copies) and PI and PO are subsets of Σ  that 
denote the input and output permitted contexts of the 
processor, while FI and FO (which are again subsets of 
Σ) are the input and output forbidden contexts of the 
processor. For a given couple of permitted and 
forbidden contexts P and F we will define four ways of 
running the filters to act over a string w. They will be 
defined as follows (alph(w) will denote the set of 
symbols that w contains): 

1. (P ⊆ alph(w)) ∧ (F ∩ alph(w) = ∅) 

2. alph(w) ⊆  P 

3. (P ⊆ alph(w)) ∧ (F ⊄ alph(w)) 

4. (alph(w) ∩ P ≠ ∅) ∧ (F ∩ alph(w) = ∅) 

In addition, we can assume P and F to be languages 
over Σ instead of symbols. Then, the filters can be 
adapted to keep the membership property instead of the 
⊆ and ∩ relations. 

We will denote the set of evolutionary processors 
over V by EPV. 

A hybrid network of evolutionary processors is a 
tuple Γ = (V, G, N, C0, β, i0) where 

1. V is an alphabet 

2. G=(XG, EG) is an undirected graph which 
represents the topology of the network 

3. N: XG → EPV is a mapping that associates to each 
node an evolutionary processor 

4. C0 : XG → 2V* is a mapping that associates to 
every node an initial set of words. Namely, it is 
the initial configuration of the network. 

5. β: XG → {(1), (2), (3), (4)} defines the type of 
input/output filters of every processor. 

6. i0 ∈ XG is the output node of the network 

 

Observe that in the definition given in [2], the 
network includes a component α that defines the 
application of the insertion and deletion rules at the 
right, left or at any position of any string. Here, we 
eliminate such component given that the rules will be 
applied at an arbitrary position. 

The running of a NEP starts by an evolutionary step 
where the rules are applied in every processor 

independently. All the combinations of rule applications 
are considered due to the presence of multiple copies of 
every string. Then, a communication step is performed, 
where the strings inside every processor are filtered as 
outputs and then they are sent out to the rest of 
processors which are connected to the source one. When 
the strings arrive at any processor they are filtered as 
inputs. These two phases are repeated as many times as 
possible. Finally, when the network stops (i.e. there is 
no application of rules and communication of strings) 
the result is collected in the processor i0. 

This model has been proved to be universal. That is, 
the model is able to recognize or generate any 
recursively enumerable language [2]. 

In the following section we will show a proposal to 
implement every component of the evolutionary 
processors. 

III. IMPLEMENTING EVOLUTIONARY 
PROCESSORS 

Here, we propose an implementation of evolutionary 
processors in Java [7]. This implementation is based on 
a set of interfaces that define the operativity of the 
application and the relations between the different 
classes that we will propose.  For every interface we 
can define different classes, so we have a high degree of 
flexibility and a robust formalism for every function 
that the operating units must perform. 

For example, the classes ExecEngineSequential 
and ExecEngineConcurrent represent a sequential 
running engine and a concurrent running engine 
respectively. They share the same interface to 
communicate with the rest of classes. 

The dependencies between classes and interfaces are 
showed in Figure 1 which represents the diagram of 
classes in UML. 
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Fig. 1. Diagram of classes in UML 

We will explain the diagram of Fig. 1. First, we can 
see that the application main class is 
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EvolutionaryProcessor which is implemented by the 
interface IEvolutionaryProcessor. In addition, this 
class has a set of components which are defined through 
their interfaces: One or more rules, two filters (one to 
act over strings and the other that acts as a buffer) and a 
running engine. 

The rules can be of insertion, substitution or deletion. 
The filters are defined as lists, and they can be lists of 
words (LOW), lists of segments (LOS), lists of 
characters (LOCh) which can be permitted or forbidden 
or finite automata (Aut) which define regular languages 
in order to make membership filters. The multisets have 
been implemented through the interface Map<K,V> in 
Java. We can use hashMap<K’,V> or treeMap<K,V>. 

Finally, for the running engine we have two 
implementations: one which is sequential and the other 
which is concurrent but it is based on the sequential 
engine. 

The operability of the evolutionary processor is 
composed of two phases: First we have a calculation 
phase which starts with a call to the method 
startOneStep of the evolutionary processor. This 
method calls to the method applyRules which applies 
the rules which have been previously passed through 
setRules. These rules are applied over the words of the 
multiset which has been passed as a parameter and, 
finally, the result is stored. The method of the 
evolutionary processor endOneStep, gets the last stored 
result and calculates the words which remains in the 
processor (they will be stored in buffer). In addition it 
calculates the words that will be sent out the processor. 
We can see the full operability of the evolutionary 
processor in Fig. 2. 

 

EvolutionaryProcessor ExecEngine Rules Rule

startOneStep
applyRules(words)

apply

applyRule(word,position)

endOneStep
returnResult

returnResult

outFilteredWords

[for each word in words]

positions

 
Fig. 2. Operability in the evolutionary processor. 

The second phase that we have referred before is the 
communication phase. After the running of endOneStep 
we have the set of words that will be sent out the 
processor to the rest of connected processors in the 
network. In addition, the rest of connected processors in 
the network will sent their words to the current 

processor. We will use the method inFilteredWords to 
collect these multisets and we store in buffer the words 
that pass the input filter. Finally the method update is 
called to update the multiset of words with the words 
stored in buffer. 

Interfaces and source code  
Now we will describe every component of the 

evolutionary processor defined by its interface. We will 
explain every interface and its methods. 

Rule 
We have the following interface to manage a single 

rule of the processor 
 

 public interface IRule { 
Vector<String> applyRule(Vector<String> s,  
                        int pos); 

    int[] positions(Vector<String> s); 
    String getType(); 

} 
 

 The main method is called applyRule and it takes 
a word and one of its positions as parameters. Then, the 
rule is applied over the word at the specified position 
and the method returns a new word. In order to calculate 
the available positions, we use the method positions 
which returns an array with all the positions in which 
we can apply the rule over the word. The method 
getType will be used in different classes to get 
information about the objects (usually the information 
returned is the type of the object). 

 The class RuleGram implements this interface. 
We use it in order to define deletion, substitution or 
insertion rules. Every rule has two Strings (the head and 
the body) with length greater or equals to zero (which 
represent the empty string). 

 
Rules 

We have the following interface to manage a set of 
rules of the processor 

 
 public interface IRules { 

 void apply(IMultiset m); 
    IMultiset returnResult(); 
    String getXML(); 
    String getType(); 
} 

 
 The main method is called apply and it takes a 

multiset as input and then it inspects every word that it 
contains and it applies an arbitrary rule to every copy of 
the word. The rest of the words remain stored in an 
auxiliary multiset that belongs to the running engine. In 
this phase we use the methods of the rule. We use the 
methods of the rule positions and applyRule. This 
process can avoid the random component to select rules 
in the case that we have an infinite number of rules 
given that we can apply all the available rules over the 
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words and we can obtain all the combinations with an 
infinite number of results. The method returnResult 
allows accessing the auxiliary multiset to obtain the 
result of the calculation step. The method getXML 
obtains the corresponding XML scheme and, finally, the 
method getType will be used in different classes to get 
information about the objects. In this case, it returns the 
type of rules that we are applying.. 
 
Filters 

The input and output filters of the processor are 
managed through the following interface 
 

public interface IFilter { 
    boolean passFilter(Vector<String> s); 

           String getXML(); 
    String getType(); 

} 
 

 The main method, passFilter, tells whether a word 
pass the filter or not, while getType returns the type of 
the filter. 

The class FilterLOW implements this interface and 
represents the filter which is defined by a list of strings. 
In order to pass the filter a membership query is 
performed. If a given word belongs to the vector of 
strings then it passes the filter, otherwise it does not. In 
order to create the filter, we impose a lexicographic 
order in the elements of the vector. So, when we are 
interested to test whether a word belongs to the vector 
or not, we employ a logarithmic time process instead a 
linear one. 

There are three more available implementations, 
(filterLOS, filterLOCh and filterAut). They represent 
filters that contain segments or characters which can be 
permitted or forbidden or a finite automaton in order to 
define membership filters. We can manage four different 
ways of running the filters. See the definitions in section 
2. We will use segm(w) instead of alph(w) when we 
apply filterLOS. Here, segm(w) represents the list of 
segments of w. 
 

We can observe that, when we use filterLOW there 
is only one way of running. 

 
Multisets 

The multisets that appear in the evolutionary 
processors can be managed through the following 
interface 
 

import java.util.Iterator; 
import java.util.Vector; 
public interface IMultiSet {  
 void addMultiSet(IMultiSet m); 
 int getNumberOfCopies(Vector<String>  
                       word); 
 void addWord(Vector<String> word,  
              Integer copies); 
 void removeWord(Vector<String> word); 

 Iterator<Vector<String>> words(); 
 void removeMultiSet(IMultiSet ms); 
 String getType(); 
 int size(); 
 String getXML(); 
} 

 
This interface represents a multiset of words and it 

includes the set of basic functions to manage it.  In 
order to add a word to a multiset we use addWord. 
Here we pass a word and its number of copies (the 
number of copies must be greater than 0 and we use -1 
to represent an infinite number of copies).  The method 
removeWord erases every copy of a given word.  
addMultiSet adds a multiset to  the current multiset (if 
they have common words  then it sums the number of 
copies) and removeMultiSet deletes all the words 
contained in the parameter multiset from the  current 
multiset. In addition, we have two more methods which 
allows the inspection of a multiset. They are  words, 
that obtains an iterator which contains every word, and  
getNumberOfCopies which tells the number  of 
copies of every word in the multiset.  Finally, to get the 
information of a multiset we have the methods getType 
which returns the type of the multiset and size which 
tells the number of words that it contains. 

This interface has two different implementations: we 
can use  MultiSetHash or MultiSetTree. Both classes 
depend from the interface Map and the unique 
difference between them is the concrete implementation 
from the interface Map. So, MultiSetHash uses a 
HashMap, while MultiSetTree uses a TreeMap. We 
will use these data structures to store every word (which 
acts as a key) and the number of its copies. 
 
The running engine 

The following interface implements the running 
engine 
 

public interface IExecEngine { 
       void applyRules(IMultiSet m); 
       IMultiSet returnResult(); 
       void setRules(IRules r); 
} 

 
The running engine is one of the main components 

of the implementation given that it will support most of 
the work. So, an efficient implementation is 
fundamental to obtain an application with a high 
performance efficiency. First, we must specify the rules 
to be applied before calling any calculation step. In 
order to make so, we use the method setRules. Then, 
we can start the calculation process which is divided 
into two different phases. In the first phase, applyRules 
calls the method apply of the class Rules. The method 
returnResult calls the method returnResult of the class 
Rules.  
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Evolutionary Processor 
The following interface implements the evolutionary 

processor. 
 

public interface IEvolutionaryProcessor { 
       void startOneStep(); 
       IMultiSet endOneStep(); 
       void inFilteredWords(IMultiSet m); 
       void update(); 
       Object info(String t); 
       IMultiSet getState(); 
       IRules getRules(); 
       IFilter getOutputFilter(); 
       IFilter getInputFilter(); 
       String getId(); 
       String getEngine(); 
} 

 
 This is the main interface of the processor given 

that it fully defines the operability of the application. 
The calculation step is implemented through two 
methods: startOneStep calls to the running engine 
method applyRules, and sends the multiset of words of 
the processor as a parameter. The second method,   
endOneStep, calls to the method returnResult, and 
then it returns a multiset. The method takes the last 
multiset and evaluates the words that pass the output 
filters, it returns these words. The rest of the words are 
stored in an auxiliary multiset. The communication is 
performed between returnResult (the words that are 
sent out) and inFilteredWords which takes a multiset 
(coming from a different processor) and inspects the 
words that can pass the input filter. These words are 
stored in the auxiliary multiset. After the running of the 
calculation and communication phases we have stored 
the words that must be kept in the processor inside the 
auxiliary multiset. In order to update the state of the 
processor we will use the method update. The rest of 
methods of this interface have been designed to get the 
information about the processor. We can obtain the 
general information by using info, or we can use 
concrete methods such as getState, getRules, 
getOutputFilter, getInputFilter, getId and getEngine. 
 

In order to store the descriptions of the processor 
and the results that it produces, we have decided to use 
XML files. This format allows a high compatibility and 
power to make descriptions. An additional advantage to 
use XML is that it is a well known standard with fully 
implemented parsers and it allows an easy definition of 
the structure of labels to be used. Whenever we wish to 
run the application, we must pass the location of the 
files which contains the definitions of the different 
processors that we want to use. We have defined a XML 
scheme for every component of the processor. 

 

IV. SOLVING THE SAT PROBLEM 

The Satisfiability Problem (SAT) is addressed as the 
first problem to be NP-complete as it was proved by SA 
Cook [8]. The problem can be enunciated as follows: 
“Given a finite set of boolean variables and a finite set 
of clauses over the variable. Is there any assignment for 
the variables that holds every clause true ?” 

Here, we propose a polynomial time solution for the 
SAT problem by using a NEP of 2n + 2 processors, 
where n is the number of boolean variables of the SAT 
instance. In the following, we give a formal definition 
of the NEP that we propose to solve SAT. 

 
The SAT instance can be encoded as a finite string 

x=<Q1><Q2>…<Q3> where Qj=b1b2…bk,. is the jth 
clause and bp is a literal (that is the boolean variable or 
its negated version). Let T={a1, a2, …, an} be the set of 
the boolean variables of the SAT instance and 
Tnot={¬a1, ¬a2, …, ¬an} be the corresponding negated 
variables. We will consider the set C={<, >, t, f } and 
V=T∪Tnot∪C.  The network that we propose is 
composed of 2n + 2 processors, namely Nin, Nout, N1t, 
N2t,…, Nnt, N1f, N2f, …, Nnf. Here, Nin is the input 
processor and Nout the output processor. The definition 
of every processor is as follows, observe that we will 
define every processor by the tuple (A,B,C,D) where A 
is the finite set of evolution rules, B is the finite set of 
initial strings in the processors, C is a language for the 
input filter and D is a language for the output filter (here 
we will use the class FilterLOW) 

 
Nin=(∅, x, ∅, V*) 
Nout=(∅, ∅, C*-C*<f+>C*, ∅) 
(∀ i 1 ≤ i ≤ n) 
Nit=({ai→t; ¬ai→f}, ∅,  
     V*(ai,¬ai)V*,V*-V*(ai,¬ai)V*) 
(∀ i 1 ≤ i ≤ n) 
Nif=({ai→f; ¬ai→t}, ∅,  
    V*(ai,¬ai)V*,V*-V*(ai,¬ai)V*) 
 

The topology of the network will be a complete 
graph. 

The network works as follows: Initially we 
introduce the encoded instance x in the input processor 
Nin. Then, given that the output filter is V*, the string x 
is communicated to the rest of the evolutionary 
processors and it is stored inside them with the 
exception of the output processor Nout due to its input 
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filter. Observe that, for any processor Nit or Nif, the 
string x will pass the input filter if the encoded instance 
has an appearance of the variable ai or its negated 
version ¬ai. In the following evolutionary step the 
encoded instance is assigned with true or false values 
for every variable. Observe that it is performed in any 
processor Nit or Nif with their corresponding substitution 
rules. Then, the assigned string is communicated to the 
rest of processors and the assignment process is 
performed in various steps as described before. Once 
the string has all its variables with an assignment value 
then it is communicated to the output node and it will 
pass its input filter if and only if all the clauses are 
satisfied.  

Some remarks: 
(1) The network assigns to the variables the same 

value in different clauses. That is, if we assign the true 
value to the variable ai then it is reflected in any clause 
(observe that a string only leaves the processor Nit or Nif 
if the variable ai has an assigned value at any clause due 
to its output filter). 

(2) The time complexity is polynomial with the size 
of variables and clauses. Observe that we make all the 
possible assignments in linear time (depending on the 
number of clauses) and we communicate the strings in 
linear time (depending on the number of variables). 

(3) All the combinations of  value assignments to 
the variables are tested due to the topology of the graph, 
which is complete. 

V. CONCLUSION 
We have proposed a full architecture of methods and 

classes in Java in order to implement Evolutionary 
Processors. This is the first step towards a full simulator 
of the NEP model. As an example we have proposed a 
solution for the SAT problem that holds the 
implementation that we have proposed.  

Actually we are performing a set of experiments in 
order to test our implementation for the solution of the 
SAT problem. The results will be reported in future 
works. In addition, we are developing a user interface in 
order to complete a full simulator for the NEP model. 
Again, it will be reported in future works. 
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